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BACKGROUND: Our environment is replete with chemicals that can affect embryonic and extraembryonic development. Dioxins, such as 2,3,7,8-tetra-
chlorodibenzo-p-dioxin (TCDD), are compounds affecting development through the aryl hydrocarbon receptor (AHR).
OBJECTIVES: The purpose of this investigation was to examine the effects of TCDD exposure on pregnancy and placentation and to evaluate roles for
AHR and cytochrome P450 1A1 (CYP1A1) in TCDD action.
METHODS: Actions of TCDD were examined in wild-type and genome-edited rat models. Placenta phenotyping was assessed using morphological,
biochemical, and molecular analyses.
RESULTS: TCDD exposures were shown to result in placental adaptations and at higher doses, pregnancy termination. Deep intrauterine endovascular
trophoblast cell invasion was a prominent placentation site adaptation to TCDD. TCDD-mediated placental adaptations were dependent upon maternal
AHR signaling but not upon placental or fetal AHR signaling nor the presence of a prominent AHR target, CYP1A1. At the placentation site, TCDD
activated AHR signaling within endothelial cells but not trophoblast cells. Immune and trophoblast cell behaviors at the uterine–placental interface
were guided by the actions of TCDD on endothelial cells.
DISCUSSION: We identified an AHR regulatory pathway in rats activated by dioxin affecting uterine and trophoblast cell dynamics and the formation
of the hemochorial placenta. https://doi.org/10.1289/EHP9256

Introduction
Hemochorial placentation, as seen in the human, rat, and mouse
involves lineage-specific development of specialized trophoblast
cell types, which orchestrate the efficient redirection of blood
flow to the placenta and delivery of nutrients to the fetus
(Georgiades et al. 2002; Knöfler et al. 2019; Maltepe and Fisher
2015; Soares et al. 2018). Pregnancy-related diseases such as pre-
eclampsia, intrauterine growth restriction, and preterm birth are
associated with dysfunctional placentation, especially failures in
endovascular trophoblast cell invasion and uterine spiral artery
remodeling (Brosens et al. 2011, 2019). The rat exhibits deep
intrauterine trophoblast cell invasion resembling human placenta-
tion and is a useful model for investigating regulatory events at
the maternal–fetal interface (Pijnenborg and Vercruysse 2010;
Soares et al. 2012).

Placental plasticity is a key to a successful pregnancy (Soares
et al. 2014, 2018). The placenta can adapt structurally and func-
tionally to environmental challenges, ensuring nutrient and gas
exchange and permitting fetal development to proceed. However,
these adaptive mechanisms can be overwhelmed or disrupted
leading to altered fetal nutrient and gas supply, which is detri-
mental to fetal growth and maturation (Sferruzzi-Perri and Camm
2016; Vaughan et al. 2011). In utero insults affecting placentation
can result in lifelong health consequences (Burton et al. 2016).
Differences between healthy and diseased states can be attrib-
uted to the effectiveness of placenta-dependent adaptations to
environmental challenges (Soares et al. 2014, 2018). Molecular
mechanisms underlying placental adaptations to environmental
exposures are poorly understood.

Endocrine disruptors are a class of environmental exposures
that act to interfere with normal cell signaling pathways (Gore
et al. 2015). Some endocrine disruptors are ubiquitous in our
environment and represent a significant public health concern
(Bergman et al. 2013; Gore et al. 2015; La Merrill et al. 2020).
Endocrine disruptors can be effective at low concentrations and
can perturb critical molecular events when introduced at critical
windows during embryonic development (Heindel 2019; Jirtle
and Skinner 2007; Rissman and Adli 2014; Schug et al. 2011).
The pollutant, 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), is
generated as a by-product of diverse industrial processes, as well
as during waste incineration, resulting in its wide environmental
dissemination and actions as an endocrine disruptor (Poland and
Knutson 1982). TCDD induces the aryl hydrocarbon receptor
(AHR) signaling pathway (Denison and Nagy 2003; Schmidt and
Bradfield 1996). AHR is a member of the basic helix–loop–helix
(bHLH) family of transcription factors and is unique in its activa-
tion by ligands (Avilla et al. 2020; McIntosh et al. 2010). In the
absence of a ligand, AHR is present in the cytoplasm in a latent
state bound to chaperone proteins and other regulatory proteins
(Avilla et al. 2020; Dietrich and Kaina 2010; Gu et al. 2000;
Petrulis and Perdew 2002; Wright et al. 2017). Upon ligand
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binding, AHR translocates into the nucleus and heterodimerizes
with the AHR nuclear translocator (ARNT) via shared per–Arnt–
Sim domains and regulates gene transcription (Beischlag et al.
2008; Gu et al. 2000). This classical/canonical pathway for AHR
action has been extensively investigated and implicated in drug
metabolism and in a wide variety of physiological and pathologi-
cal processes (McMillan and Bradfield 2007; Mulero-Navarro
and Fernandez-Salguero 2016; Ramadoss et al. 2005). AHR can
also act in a nonclassical/noncanonical mode to influence an
assortment of signaling pathways that affect cell function (Avilla
et al. 2020; Dietrich and Kaina 2010; Wright et al. 2017).

Exposure to TCDD can affect pregnancy success and aspects
of placental and fetal growth (Birnbaum 1994; Burns et al. 2013;
Gray et al. 1997; Hurst et al. 2000; Ishimura et al. 2009), and
genomic imprinting (Iqbal et al. 2015; Kang et al. 2011) in the
rodent placenta. These actions are dependent upon dose and tim-
ing of exposure. Some evidence for adverse pregnancy outcomes
following TCDD exposure has been reported in the human
(Wesselink et al. 2014). In this study, we investigated the effects
of TCDD exposure on placental development in the rat.

Methods

Chemicals
TCDD (99.8% purity; D-404S), Aroclor 1254 (99.8% purity;
APP-9-163-10X), polychlorobiphenyl 126 (PCB126; 99.8% pu-
rity; C-126N), and benzo[a]pyrene (BaP; 99.8% purity; H169N)
were obtained from AccuStandard, solubilized in dimethyl sulf-
oxide (DMSO; D8418; Sigma-Aldrich), and delivered in corn oil
(405435000; Acros Organics/ThermoFisher). The control corn
oil preparation delivered to rats included the same amount of
DMSO used to initially solubilize the AHR ligands.

Animals
Holtzman Sprague-Dawley rats were obtained from Envigo and
maintained under specific pathogen-free conditions in an
Association for Assessment and Accreditation of Lab Animal
Care–accredited facility at the University of Kansas Medical
Center (KUMC; Kansas City, KS). Rats were maintained in a
14-h light:10-h dark photoperiod and fed standard rat chow and
water ad libitum. Timed pregnancies were established by mating
adult female rats (8–10 wk of age) with adult male rats (>10 wk
of age). Presence of sperm or a seminal plug in the vagina was
designated gestation day (GD) 0.5. Pseudopregnant females were
generated by mating adult female rats (8–10 wk of age) with
adult vasectomized male rats (>10 wk of age). Detection of semi-
nal plugs was designated Day 0.5 of pseudopregnancy. TCDD
[2–20 lg=kg body weight (BW)] or the corn oil vehicle control
was administered once by oral gavage in a volume of 2:5 mL=kg.
The DMSO concentration in the treatments was 0.2%. Adult
male rats (10 wk of age) were treated and euthanized 5 d later by
carbon dioxide (CO2) asphyxiation and thoracotomy, whereas
pregnant females were treated on GD6.5 and similarly euthanized
at GD13.5 or 18.5. The health of each pregnancy was determined,
and tissues were collected for biochemical and histological analy-
sis. Failed placental–fetal units were identified by the presence of
hemorrhage, necrosis, and anemic and growth restricted fetuses.
Fetal survival rate was calculated on a per pregnancy basis as the
number of live fetuses/total fetuses times 100. Tissues used for
biochemical analysis (adult liver, lung, and spleen; placentation
site; and fetal liver and brain) were snap frozen in liquid nitrogen
and stored at −80�C until processed, whereas tissues for histolog-
ical analysis (placentation sites and whole fetuses) were frozen in
dry ice–cooled heptane and stored at −80�C until processed.

Analyses were performed on tissues randomly selected from each
pregnancy. A total of 386 pregnant females (326: treated; 60:
untreated) and 130 male rats were used in this study. Pregnancies
in the Holtzman Sprague-Dawley rat were obtained at an effi-
ciency of 96% of all mated females. All animal protocols were
approved by the KUMC Institutional Animal Care and Use
Committee (approval no. 2019–2495).

Generation of Ahr and Cyp1a1 Mutant Rats
Targeted mutations were generated using clustered regularly
interspaced palindromic repeats (CRISPR)/CRISPR associated
protein 9 (Cas9) genome editing (Iqbal et al. 2021). For Ahr gene
editing, a single guide RNA (gRNA) was designed, synthesized,
and validated by the Genome Engineering Center at Washington
University (St. Louis, MO). The gRNA was targeted to Exon 2 of
the Ahr gene, which encodes the bHLH DNA binding domain
(target sequence: CTTCTAAACGACACAGAGACCGG; corre-
sponding to NM_001308254). The cytochrome P450 1A1 gene
(Cyp1a1) was targeted using duplexCRISPR RNA (crRNA) (Alt-R
CRISPR-Cas9 crRNA; 425286668; Integrated DNA Technologies)
and trans-activating CRISPR RNA (tracrRNA) (1072532; Integrated
DNA Technologies). Functional Cyp1a1 gRNAs were generated by
incubating crRNAs and tracrRNAs at 95°C for 5min and then cooled
slowly at room temperature before use. gRNAs targeting Exon 1
(TCCAAGGCAGAATGTGGTGACGG) and Exon 7 (GGGGT-
GATCCAAACGAGTTCCGG; corresponding to NM_012540.2) of
theCyp1a1 genewere used to generatemutations.

Genome editing reagents were microinjected or electropo-
rated into rat embryos on the basis of previously described proce-
dures (Iqbal et al. 2009; Kaneko 2017a, 2017b; Shao et al. 2014).
In brief, 4- to 5-wk-old donor female rats were intraperitoneally
injected with 30 U of equine chorionic gonadotropin (eCG;
G4877; Sigma-Aldrich), followed by an intraperitoneal injection
of 30 U of human chorionic gonadotropin (hCG; C1063; Sigma-
Aldrich) 48 h later and then immediately mated with adult male
rats. Zygotes were flushed from oviducts with M2 medium at
GD0.5 and maintained in M2 medium (MR-015-D; EMD
Millipore) supplemented with bovine serum albumin (A9647;
Sigma-Aldrich) at 37°C in 5% CO2 for 2 h. Zygotes were micro-
injected with a mixture of Ahr gRNA (25 ng=lL) and Cas9
mRNA (30 ng=lL; Genome Engineering Center, Washington
University) prepared in Tris-ethylenediaminetetraacetic acid (TE)
buffer (pH 7.4). Microinjections were performed using a Leica
inverted microscope (Leica Biosystems) and an Eppendorf
microinjection system. For Cyp1a1, zygotes were electroporated
with a mixture of gRNAs for Cyp1a1 (35 ng=lL) and Cas9 pro-
tein (1081058; Integrated DNA Technologies) with a nuclear
localization signal (1 ng=lL) prepared in TE buffer (pH 7.4). The
NEPA21 electroporator (Nepa Gene Co. Ltd.) was used to trans-
fer the gene editing reagents. Parameters for the poring pulse
were 225 V, 1-ms pulse width, 50-ms pulse interval, 4 pulses,
10% decay rate, with positive polarity, whereas parameters for
the transfer pulse were 20 V, 50-ms pulse width, 50-ms pulse
interval, 5 pulses, 40% decay rate, with positive or negative po-
larity. Manipulated zygotes were transferred to oviducts of Day-
0.5 pseudopregnant rats (20–30 zygotes per rat and at least 6
embryo transfers performed for Ahr and Cyp1a1).

Offspring were screened for mutations at specific target sites
within each edited gene. For initial screening, genomic DNA was
purified from tail-tip biopsies using the Extract-N-Amp Tissue
Polymerase Chain Reaction (PCR) Kit (Sigma-Aldrich). Potential
mutations within target loci were screened by designing specific
PCR primers to determine the boundaries of the deletions by DNA
sequencing (Genewiz Inc.). PCR primers used for genotyping of
the genetically altered rats are listed in Table S1. Germline

Environmental Health Perspectives 117001-2 129(11) November 2021



transmission of the mutated genes was determined in the F1 off-
spring by backcrossing founder (F0) rats with wild-type (WT) rats.
Detection of mutations in F1 offspring identical to the mutation
fromF0 parentswas considered confirmation of germline transmis-
sion. Ahr and Cyp1a1 mutant rat models are available at the Rat
Resource & Research Center (RRRC nos. 831 and 890; University
ofMissouri, Columbia,MO; https://www.rrrc.us).

Functional Validation of Ahr and CYP1A1 Mutant Rats
Ten-wk-old male AHR mutant rats and WT littermates were
administered either a single oral dose of TCDD (25 lg=kg BW),
Aroclor 1254 (50 mg=kg BW), PCB126 (100 lg=kg BW), BaP
(100 mg=kg BW), or the corn oil vehicle (n=5=group). Ten-wk-
old male CYP1A1 mutant rats and WT littermates were adminis-
tered either a single oral dose of TCDD (25 lg=kg BW) or the
corn oil vehicle (n=3–5=group). Rats were euthanized 5 d post-
exposure. Liver and thymus tissues from control and TCDD treat-
ments were collected and weighed. Hepatic tissue from all
treatments was frozen for subsequent biochemical analyses.

CYP1A1 Enzyme Activity Assay
CYP1A1 activity was measured using the P450-Glo CYP1A1
assay kit (V8751; Promega), according to the manufacturer’s
instructions. Liver tissue (n=3–5 per group WT or AHR Null
exposed to either oil control or 25 lg=kg BW TCDD) was minced
and homogenized in 100mM of potassium phosphate buffer (pH
7.4) using a Potter-Elvehjem homogenizer (ThermoFisher).
Supernatants were collected by centrifugation at 9,000× g for 10
min and then centrifuged at 60,000× g for 1 h in an Optima TL
ultracentrifuge (Beckman Coulter) to obtain microsomes (Knights
et al. 2016). Liver microsomes (20 lg) were mixed with luciferin-
chloroethyl ether (substrate) for 10 min at room temperature. After
preincubation, a reduced nicotinamide adenine dinucleotide phos-
phate (NADP) (NADPH)-regenerating system solution (2:6mM
NADP+, 6:6mM glucose-6-phoshate, 0:4 U=mL glucose-6-
phoshate dehydrogenase, and 6:6mM magnesium chloride) was
added and the mixture incubated at 37°C for 30 min. Generation of
luciferin was detected by adding the luciferin detection reagent
included in the P450-Glo CYP1A1 assay kit, and luminescence
was determined using a luminometer (model TD-20/20; Turner
BioSystems) and reported as relative fluorescence units.

Ovulatory Responses to Exogenous Gonadotropins
Four- to 5-wk-old female rats (n=6 per group, WT or AHR null)
were examined for responsiveness to exogenous gonadotropins.
Females were injected intraperitoneally with eCG (30 IU) at 1700
hours, followed by an injection of hCG (30 IU) 48 h later. Twenty-
four hours after the hCG administration, animals were euthanized,
oocytes were flushed from the oviduct with M2 medium, cumulus
cells were denuded using hyaluronidase (10 mg=mL for 5 min,
H3631, Sigma-Aldrich), and oocytes were counted.

Fertility Tests
Fertility tests were performed by mating 12- to 16-wk-old male
rats with 8- to 12-wk-old female rats for 12 wk and assessing
pregnancies and litter sizes (n=6 per genotype pairing). Mutant
or WT males were paired with WT females, and mutant or WT
females were paired with fertile WT males. Vaginal lavage was
performed daily to verify estrous cyclicity, mating (presence of
sperm), and signs of pregnancy (continuous diestrus). Litter sizes
of pregnancies were also monitored.

In Vitro Analysis of Trophoblast and Arterial Endothelial
Cell Responses to TCDD
Blastocyst-derived rat trophoblast stem (TS) cells previously gener-
ated in our laboratory (Asanoma et al. 2011) were cultured in rat
TS cell medium [RPMI 1640, 20% (vol/vol) fetal bovine serum
(FBS; ThermoFisher), 100 lm 2-mercaptoethanol (M7522; Sigma-
Aldrich), 1mM sodium pyruvate (11360-070; ThermoFisher),
50 lM penicillin (15140122; ThermoFisher), and 50 U=mL strep-
tomycin (15140122; ThermoFisher)] supplemented with 70%
rat embryonic fibroblast conditioned medium prepared as previ-
ously described (Asanoma et al. 2011), fibroblast growth factor 4
(37:5 ng=mL; 100-31; Peprotech), and heparin (1:5 lg=mL;
H3149; Sigma-Aldrich). Rat arterial endothelial cells were pur-
chased fromVECTechnologies, Inc. andmaintained inMCDB-131
complete culture medium. Cells were plated in 962-mm2 wells at
∼ 50–60% confluence and treated 12 h after plating. Cells were
exposed to vehicle control (i.e., DMSO) or TCDD at 10 or 100 lM,
concentrations known to induce CYP1A1 in vitro (Knutson and
Poland 1980). The DMSO concentration in the cell cultures was
0.05%. After 24 h, cells were harvested, medium removed, and total
RNA isolated.

Transcript Analysis
Total RNA was extracted from cells (n=6) and tissues (n=5–6)
using TRI Reagent Solution (AM9738; ThermoFisher).
Complementary DNAs (cDNAs) were synthesized from total
RNA (1 lg) for each sample using SuperScript 2 reverse tran-
scriptase (18064014; ThermoFisher), diluted 5 times with water,
and subjected to quantitative PCR (qPCR) to estimate mRNA
levels. Real-time qPCR (RT-qPCR) primers were designed using
Primer3 (https://bioinfo-ut.ee/primer3), obtained from Integrated
DNA Technologies, and sequences are presented in Table S2.
RT-PCR of cDNAs was carried out in a reaction mixture (10 lL)
containing SYBR Green PCR Master Mix (4309155; Applied
Biosystems) and primers (200 nM each). Amplification and flu-
orescence detection were carried out using the ABI 7500 RT-
PCR system (Applied Biosystems). PCR was performed under
the following conditions: 95°C for 5 min, followed by 35 cycles
at 95°C for 30 s, 60°C for 30 s, and 72°C for 30 s. The delta-
delta Ct method was used for relative quantification of gene
expression for each sample normalized to 18S RNA, which was
stable among the conditions and tissues tested, as shown in
Table S3.

Flow Cytometry
Uterine mesometrial compartments associated with placentation
sites (termed the metrial gland) were dissected from GD13.5 preg-
nant females (n=3), as previously reported (Ain et al. 2006).
Harvested metrial glands were minced and then incubated in colla-
genase I (17100017; ThermoFisher) for 30 min to dissociate the
tissue and liberate natural killer (NK) cells. Dissociated cells were
passed through a 70-lm cell strainer (10199-656; VWR) and
incubated with ammonium–chloride–potassium (ACK) buffer
(A1049201; ThermoFisher) to lyse erythrocytes. Cells (1× 106)
were incubated for 30 min with 2% FBS (Sigma-Aldrich) and
5 lg=mL rat immunoglobulin G (IgG; 550617; ThermoFisher)
to block nonspecific antibody binding sites, then incubated for
40 min with phycoerythrin-conjugated mouse antirat CD161
(550270; BD Pharmingen). All cells were washed in phos-
phate buffered saline (PBS; pH 7.4) containing 2% FBS. Cells
were then analyzed using a BD LSRII flow cytometer (BD
Biosciences).
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Western Blotting
Tissues were collected in radioimmunoprecipitation assay lysis
buffer (sc-24948A; Santa Cruz Biotechnology) with a protease in-
hibitor cocktail (11697498001; Sigma-Aldrich), homogenized for
30 s using a PRO300A tissue homogenizer (Pro Scientific), and cen-
trifuged at 5,000 × g for 5 min. Protein concentrations of superna-
tants were determined using the DC Protein Assay Kit (5000112;
Bio-Rad Laboratories). Protein preparations (10 lg=lane) were sep-
arated on sodium dodecyl sulfate–polyacrylamide gels and trans-
ferred to Immun-blot polyvinylidene difluoride (PVDF)membranes
(10600023; GE Healthcare) for 1 h at 4°C. The PVDF membranes
were blocked in 5% nonfat milk in PBS-Tween 20 (0.1%) for 1 h at
room temperature. Antibodies against AHR (1:500 dilution; BML-
SA210; Enzo Life Sciences, Inc.), CYP1A1 (1:2,000 dilution;
A3001; XenoTech), and glyceraldehyde-3-phosphate dehydrogen-
ase (GAPDH; 1:10,000 dilution; AB2302; Millipore) were diluted
in 5%nonfatmilk in PBS-Tween 20 and incubated at 4°C overnight.
Immunoreactive proteins were detected with secondary antibodies
consisting of horseradish peroxidase (HRP)–conjugated goat anti-
rabbit IgG (1:8,000 dilution; 7074P2; Cell Signaling) and HRP-
conjugated rabbit antimouse IgG (1:10,000 dilution; A9044rat;
Sigma-Aldrich) and the Luminata Crescendo Western HRP sub-
strate (WBLUR0100; EMD Millipore). Chemiluminescence was
detected by exposure to Radiomat LS autoradiography film (Agfa
HealthCare) followed by processing in a tabletop X-ray radiograph
film processor (KonicaMinolta SRX-101A).

Immunohistochemistry
Immunohistochemical analyses were performed on 10-lm frozen
tissue sections (n=3 per group, oil- or TCDD-treated WT rats).
Cryosections were prepared with a Leica CM 1850 cryostat
(Leica Biosystems). Primary antibodies to rat CYP1A1 (1:500
dilution; A3001; XenoTech), RECA-1 antibody (1:100 dilution;
MCA970GA; Bio-Rad), pan-cytokeratin (1:1,000 dilution; F3418;
Sigma-Aldrich), perforin (1:1,000 dilution; TP251; Torrey Pines
Biolabs), and CD31 (1:500; 550274; BD Pharmingen) were used.
Indirect immunofluorescence detection used goat antimouse IgG
tagged with Alexa 488 (1:1,000 dilution; A11029; ThermoFisher)
or goat antirabbit IgG tagged with Alexa 568 (1:400 dilution;
A11031; ThermoFisher). Tissue sections were incubated with pri-
mary antibodies at 4°C for 12 h and with secondary antibodies at
room temperature for 2 h. Negative controls were performed with
normal rabbit serum or isotype-specific control mouse IgG and did
not exhibit positive reactivity in tissue sections. Flourmount-G
with 406-diamidino-2-phenylindole (00-4959-52; ThermoFisher)
was used as a medium for slide mounting and for visualizing nuclei.
Four to six tissue sections were processed for each antibody per treat-
ment group. Processed tissue sections were inspected, and images
captured with a Nikon Eclipse 80i upright microscope equipped with
a charge-coupled device camera (Nikon). Measurements of the depth
of invasion were performed with National Institutes of Health Image
J software (Konno et al. 2007; Rosario et al. 2008). Depth of invasion
was calculated as the ratio of the distance of trophoblast cell (cytoker-
atin positive) migration from the junctional zone into the uterus vs.
the total distance between the junctional zone and the outer surface of
the uterus. Assessment of the depth of invasion was performed at the
center of each placentation site.

RNA-Sequencing
Transcript profiles were determined by RNA-Sequencing (RNA-
seq) of GD13.5 metrial gland (uterine–placental interface) from
oil- and TCDD-treated rats. Total RNA was extracted from the
tissue using TRIzol Reagent (ThermoFisher), according to the
manufacturer’s instructions. RNA quantification was performed

using a Nanodrop spectrophotometer (ThermoFisher) and 500 ng
of total RNA was used for RNA-seq library preparation.
Libraries were prepared from RNA by using a TruSeq standard
mRNA kit (RS-122-2101; Illumina), according to the manufac-
turer’s instructions. Briefly, mRNA was enriched from total RNA
by oligo-dT magnetic beads and purified, and then mRNA was
chemically fragmented. The first strand of cDNA was synthe-
sized by using random hexamer primers and reverse transcrip-
tase. AMPure XP beads (A63880; Beckman Coulter) were used
to separate double-stranded cDNA from the second strand reac-
tion mix. cDNA ends were blunted and polyadenylic acid tails
added to the 30 ends. Finally, after ligation of indexing adaptors
(Illumina), the suitable DNA fragments were selected for PCR
amplification for 15 cycles. cDNA libraries were prepared for the
oil- and TCDD-treated groups (n=4 for each) and sequenced at
the KUMC Genomics Core.

RNA-seq data were analyzed using CLC Genomics Work-
bench (Qiagen). High-quality reads were aligned to the Rattus
norvegicus reference genome (Rnor_6.0). Only reads with <2
mismatches and minimum length and a similarity fraction of 0.8
were mapped to the reference genome. Gene expression values
were reported as reads per kilobase of transcript per million
mapped reads. Transcripts that exhibited more than 1.5-fold
change (p<0:05, Benjamini and Hochberg correction for false
discovery rate) were considered differentially expressed genes.
Ingenuity Pathway Analysis (Qiagen) was used to identify the
predominant signaling pathways and molecules affected by the
treatments. RT-qPCR was used to validate the RNA-seq results.
The RNA-seq data set is available at the Gene Expression
Omnibus (GEO) website (https://www.ncbi.nlm.nih.gov/geo/;
accession no. GSE166604).

Metrial Gland Cell Isolation for Single Cell RNA-Seq
Metrial glands were collected from GD13.5 rat placentation sites
(Ain et al. 2006) and transferred to ice cold Hank’s Balanced Salt
Solution (HBSS) (n=2 per group). Tissues were minced into fine
pieces with a razor blade and digested with an enzymatic cocktail
consisting of Dispase II (1:25 U=mL; D4693; Sigma-Aldrich)
and collagenase IV (0:4 mg=mL; C5138; Sigma-Aldrich) in
HBSS at 37°C for 30 min. Cell suspensions were incubated with
ACK buffer (ThermoFisher) at room temperature for 5 min to
lyse red blood cells. Cells were washed with HBSS containing
2% FBS (vol/vol) and DNase1 (80 U=mL), and filtered through a
100-lm cell strainer. Debris was removed using MACS Debris
Removal Solution (130-109-398, Miltenyi Biotec), and the cells
were filtered through a 40-lm cell strainer. Cell numbers were
counted and viabilities determined by propidium iodide exclusion
staining followed by flow cytometry. Cell viabilities were
between 90% and 93%.

Peripheral Blood Mononuclear Cell Isolation for Single Cell
RNA-Seq
Peripheral blood mononuclear cells (PBMCs) were isolated using
Histopaque (1083-1, Sigma-Aldrich). Briefly, heparinized blood
was collected from rats by cardiac puncture and layered on
Histopaque and centrifuged at 400× g for 30 min (n=2 per group).
The supernatant was removed and the cell layer incubated with
ACK buffer (ThermoFisher) at room temperature for 5 min to lyse
red blood cells. PBMCs were collected by centrifugation at 400× g
for 5 min, washed with PBS, and collected by centrifugation at
400× g for 5 min. Cells were resuspended in HBSS, numbers
counted, and viabilities determined by propidium iodide exclusion
staining followed byflow cytometry. Cell viabilities were >95%.
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Single Cell RNA-Seq
Single cells were captured by the Chromium Controller into 10×
barcoded gel beads and library preparation was performed using
Chromium Single Cell 30 (version 3 chemistry; 10x Genomics).
Libraries were sequenced using a NovaSeq 6000 sequencer
(Ilumina). Library preparation and sequencing were performed
by the KUMC Genomics Core.

Single Cell RNA-Seq Data Analysis
The Cell Ranger pipeline was used to process and analyze the sin-
gle cell sequencing data.Cellranger mkfastq/bcl2fastqwas used to
convert raw base call files to FASTQ files followed by demulti-
plexing libraries based on sample indices. Cellranger count was
used to perform alignment, filtering, barcode counting, and unique
molecular identifier counting and to generate read count matrices
from the FASTQ files. Reads were aligned to Rnor_6.0 reference
genome using the Spliced Transcripts Alignment to a Reference
aligner. A rat reference genome was custom built using masked
Rnor_6.0 genome assembly and gene annotations [in General
Feature Format (GTF)] downloaded from ENSEMBL using the
cellranger mkref command. The Cellranger mkgtf utility was used
to filter pseudogenes in GTF files. For sample aggregation,
Cellranger count outputs were integrated and normalized using the
Cellranger aggr command. Further reanalysis was done using the
Cellranger reanalyze pipeline.

Additional data analysiswas performedwithin the Seurat pipeline
(version 3.1.5) (Stuart et al. 2019). To cluster cells,we imported genes
by cell matrices to Seurat, merged replicates, and created Seurat
objects, which was followed by filtering doublets, empty droplets,
and cells with high mitochondrial sequences with the following pa-
rameters (subset = nFeature RNA>200 & nFeature RNA<3000 &
percent:mt<20). We filtered the data set and accepted genes that
were expressed by a minimum of three cells. Oil- and TCDD-treated
data was integrated using FindIntegrationAnchors/IntegrateData
(dims= 1:20). Integrated raw counts were normalized and
log transformed, and variable genes were identified with the
FindVariableFeatures function (using default parameters). The
JackStrawPlot function in Seuratwas used tofind significant principle
components (PCs) for each data set and used to create uniformmani-
fold approximation and projection (UMAP) plots. PCs were used to
create a k-nearest neighbors graph with the FindNeighbors function
(dims= 1:20) and clustered cells with the FindClusters function
(resolution= 0:05). Cluster-specific gene expression was determined
using FindConservedMarkers. For cluster visualization and individ-
ual gene visualization on all clusters, we used theRunUMAP function
(dims= 1:20). Specific cell types in the metrial gland (stromal:
Mmp2,Timp2; mesenchymal:Col1a1,Col3a1; NK cells:Prf1, Nkg7;
macrophages: Cd74, Csf1r; endothelial cells: Cdh5, Adgrl4; smooth
muscle cells:Acta2, Tagln), and PBMCs (T cells:Cd3e, Cd3g;mono-
cytes: Csf1r, Cd68; B cells: Cd79, Cd83; NK cells: Gzma, Nkg7)
were identified on the basis of known expression profiles.

To perform differential gene expression analysis within clus-
ters across treatments, we used the FindMarkers function from
the Seurat 3 package (logfc:threshold= 0:15) (Stuart et al. 2019),
which uses the nonparametric Wilcoxon rank sum test for single-
cell gene expression. The level of statistical significance for
treatment-specific transcriptomic changes was set at a p<0:05
and a log2-fold change ≥0:15 or≤− 0:15. The single cell RNA-
Seq (scRNA-seq) data set is available at the GEO website
(https://www.ncbi.nlm.nih.gov/geo/: metrial gland accession no.
GSE166659, PBMCs accession no. GSE178407).

The Database for Annotation Visualization and Integrated
Discovery Bioinformatics Resources 6.8 (https://david.ncifcrf.
gov/) tool was used to perform functional enrichment and

pathway analyses. The CellPhoneDB tool was used to identify
ligand–receptor interactions from the scRNA-seq analysis
(Efremova and Vento-Tormo 2021).

Statistical Analysis
Values are expressed as the mean± standard error of the mean
(SEM). Statistical comparisons between two means were per-
formed with the nonparametric Wilcoxon rank sum test.
Comparisons between more than two groups were made using
analysis of variance and post hoc comparisons of multiple means
performed using the Tukey’s post hoc test.

Results

Maternal and Fetal Responses to TCDD
Initially, we evaluated the effects of various doses of TCDD on
pregnancy in the rat (Figure 1A). Pregnant rats were administered
a single gavage of vehicle or 2, 8, 12, or 20 lg=kg BW of TCDD
on GD6.5, and the viability of litters was assessed at GD13.5.
This represents an interval after embryo implantation critical for
placental morphogenesis. Administration and dosage of TCDD
were comparable to previous experimentation examining the
effects of TCDD on rat pregnancy and placentation (Ishimura
et al. 2002, 2006; Kransler et al. 2007; Wu et al. 2014). Rats
exposed to TCDD had less viable conceptuses, and this difference
appeared to be dose dependent. Rats treated with TCDD concen-
trations of 8 lg=kg BW and higher had significantly higher per-
centages of pregnancy loss than those of the control group
(Figure 1B). Maximal pregnancy loss was observed at a TCDD
concentration of 20 lg=kg BW. We used Cyp1a1 transcript
expression as a measure of AHR activation and TCDD activity.
Each of the tested concentrations of TCDD maximally activated
AHR signaling, as assessed by measuring hepatic Cyp1a1 tran-
script levels (Figure 1C); similarly, rats treated with 2 lg=kg BW
had significantly higher spleen and lung Cyp1a1 transcript levels
(Figure 1D). At 2 lg=kg BW, neither fetal nor placental weights
or fetal/placental weight ratios differed between oil- and TCDD-
treated rats assessed at GD18.5 (Figure 1E); however, this mater-
nally administered TCDD concentration resulted in higher levels
of Cyp1a1 transcripts in fetal liver and brain, which we used as a
proxy for AHR activation (Figure 1G). This was supported by
higher levels of CYP1A1 protein in the fetal liver, as determined
by immunohistochemistry (Figure 1F). We selected TCDD doses
of 2 and 20 lg=kg BW for subsequent analyses. We chose a dose
of 2 lg=kg BW of TCDD because fetuses gestationally exposed
to this dose demonstrated higher CYP1A1 protein expression,
suggesting activation of AHR signaling, without a significant dif-
ference in viability from controls. In contrast, the 20-lg=kg BW
TCDD dose was selected because it resulted in fetal demise and
extensive pregnancy loss.

Analysis of the Effects of TCDD on Placentation
Placentation sites were examined from pregnant females treated
with TCDD (2 lg=kg BWor oil). Treatments were administered on
GD6.5 (embryo implantation occurs on GD5.5) and placentation
sites examined on GD13.5 (Figure 2A). A similar structural organi-
zation of placentas into junctional and labyrinth zone compartments
was observed in both oil- and TCDD-treated pregnancies. However,
a striking differencewas seen in the presence of cytokeratin-positive
invasive trophoblast cells within themetrial gland of TCDD- but not
oil-treated pregnant rats (Figure 2B). These invasive trophoblast
cells were specifically targeted to uterine spiral arteries, where they
effectively supplanted the vascular endothelium. Significantly
deeper intrauterine endovascular trophoblast cell invasion was
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observed in TCDD-exposed placentation sites (Figure 2C,D).
Furthermore, analysis of invasive trophoblast cell-specific tran-
scripts, Prl5a1 and Prl7b1 (Ain et al. 2003; Rosario et al. 2008;
Wiemers et al. 2003), revealed significantly higher expression in the
metrial gland of TCDD-exposed pregnancies (Figure 2E).

Evaluation of TCDD and Other Environmentally Relevant
AHR Ligand Effects in AHR Null Rats
To investigate the role of AHR signaling in mediating TCDD
actions on placental development, we used WT and AHR null
pregnant rats. We first generated an AHR null rat model using
CRISPR/Cas9 gene editing (Figure 3A; Figure S1). AHR hetero-
zygote male × AHR heterozygote female breeding generated
offspring with the expected Mendelian pattern of inheritance
(Figure 3B). Homozygous disruption of the bHLH domain of
AHR eliminated the presence of immunoreactive AHR protein
(Figure 3C) and resulted in a failure of TCDD stimulated hepatic
Cyp1a1, cytochrome P450, family 1, subfamily b, polypeptide 1
(Cyp1b1), and aryl-hydrocarbon receptor repressor (Ahrr) tran-
script levels (Figure 3D) and TCDD-induced hepatic growth and
thymic regression (Figure S2A,B). Additional AHR activators,
including Aroclor 1254 (a mixture of AHR ligands), PCB126,

Figure 2.Measures of intrauterine endovascular trophoblast cell invasion in
rats with gestational TCDD exposure. (A) Schematic showing the treatment
plan used in this study. Rats were treated on GD6.5 with corn oil (OIL) or
TCDD (2 lg=kg BW) and euthanized on GD13.5. (B) Representative images
for pan-cytokeratin (green) and CYP1A1 (red) immunostaining of GD13.5
placentation sites. The white arrow shows the depth of intrauterine endovas-
cular trophoblast cell invasion. Scale bar: 500 lm. (C) Quantification of the
depth of cytokeratin-positive cell penetration into the uterine mesometrial
vasculature (n=4–6=group, *, p=0:0001). Depth of invasion was calculated
as the ratio of the distance of trophoblast cell (cytokeratin positive) migra-
tion from the junctional zone into the uterus vs. the total distance between
the junctional zone and the outer surface of the uterus. Assessments of the
depth of invasion were performed at the center of each placentation site.
(D) Schematic diagram depicting the metrial gland (uterine–placental inter-
face). (E) RT-qPCR measurements of Prl5a1 and Prl7b1 transcripts in
GD13.5 metrial gland tissues isolated from OIL- and TCDD-treated rats
(n=5=group; Prl5a1, *, p=0:0022; Prl7b1, *, p=0:0022). Transcript
expression level is relative to control. The delta-delta Ct method was used
for relative quantification of gene expression for each sample normalized
to 18S RNA. The level of significance was determined using the Wilcoxon
rank sum test. Asterisks denote statistically significant differences from the
corresponding controls. Bar graphs represent the mean±SEM. The mean
and SEM values for data presented in this figure are shown in Tables S9
and S10. Note: BW, body weight; Cyp1a1, cytochrome P450, family 1,
subfamily a, polypeptide 1; GD, gestation day; Prl5a1, prolactin family 5,
subfamily a, member 1; Prl7b1, prolactin family 7, subfamily b, member 1;
RT-qPCR, real-time quantitative polymerase chain reaction; SEM, standard
error of the mean; TCCD, 2,3,7,8-tetrachlorodibenzo-p-dioxin.

Figure 1. Effect of TCDD exposure on pregnancy outcomes. (A)
Schematic showing the treatment plan used in this study. Rats were treated
on GD6.5 with corn oil (OIL) or TCDD and euthanized on GD13.5 or
18.5. (B) Fetal survival rate (%) after TCDD treatment as assessed on
GD13.5 (n=5 pregnancies/group), *, p<0:0001. Fetal survival rate was
calculated on a per pregnancy basis as the number of live fetuses/total
fetuses times 100. (C) Detection of Cyp1a1 transcript levels in liver tissues
of GD13.5 pregnant females exposed to OIL or different concentrations of
TCDD using RT-qPCR (n=5 pregnancies/group), *, p=0:006. (D) Cyp1a1
expression in lung and spleen of OIL- or TCDD (2 lg=kg BW)-exposed
pregnant rats at GD13.5 measured by RT-qPCR (n=5 pregnancies/group;
lung, *, p=0:0079; spleen, p=0:0079). (E) Fetal and placental weights and
fetal/placental weight ratio at GD18.5 following OIL or TCDD treatment
(2 lg=kg BW) (n=5 pregnancies/group). (F) Representative images for
CYP1A1 immunohistochemistry of embryonic day (ED) 18.5 fetus
from pregnant rats treated with OIL or TCDD (2 lg=kg BW). Scale bar:
1 mm. (G) RT-qPCR measurement of Cyp1a1 transcripts in ED18.5 brain
and liver tissues from OIL- or TCDD (2 lg=kg BW)-treated pregnant
rats (n=5 pregnancies/group; fetal liver, *, p=0:0079; fetal brain,
*, p=0:0079). Transcript expression level is relative to control. The delta-
delta Ct method was used for relative quantification of gene expression for
each sample normalized to 18S RNA. Data presented in (B) and (C) were
analyzed using a one-way ANOVA followed by Tukey’s multiple compari-
son post hoc test and the Wilcoxon rank sum test (D, E, and G). The aster-
isks denote a statistically significant difference from the corresponding
control. Bar graphs represent the mean±SEM. The mean and SEM values
for data presented in this figure are shown in Tables S4–S8. Note:
ANOVA, analysis of variance; BW, body weight; Cyp1a1, cytochrome
P450, family 1, subfamily a, polypeptide 1; GD, gestation day; RT-qPCR,
real-time quantitative polymerase chain reaction; SEM, standard error of
the mean; TCCD, 2,3,7,8-tetrachlorodibenzo-p-dioxin.

Environmental Health Perspectives 117001-6 129(11) November 2021



and BaP, also failed to stimulate Cyp1a1 transcript accumulation
in liver tissue from AHR null rats (Figure S3). AHR null rats did
not significantly differ from WT rats in an assortment of repro-
ductive parameters (responsiveness to gonadotropins, fertility, or
pregnancy-associated litter size; Figure 3E–G).

We observed two pregnancy-associated responses to TCDD
(Figures 1 and 2). High concentrations of TCDD (20 lg=kg BW)
resulted in pregnancy failure, whereas lower concentrations of
TCDD (2 lg=kg BW) yielded placentation site adaptations. Fetal
survival rate in dams treated with 20 lg=kg BW was significantly

higher in AHR null animals (87.9%) than in WT animals (12.9%)
and approximated the near 100% survival rate observed with oil-
treated animals or those treated with the lower dose of TCDD
(2 lg=kg BW). Both responses to TCDD were dependent upon
AHR. Figure 4 shows the results of TCDD on pregnancy (Figure
4A), intrauterine trophoblast cell invasion, as assessed by immuno-
localization of cytokeratin (Figure 4B,C), and the expression of
invasive trophoblast cell-specific transcriptPrl7b1 (Figure 4D).

Evaluation of Placental Adaptations of CYP1A1 Null Rats
Treated with Oil or TCDD
Given that CYP1A1 is a prominent downstream target of AHR
signaling (Mimura and Fujii-Kuriyama 2003; Nebert et al. 1993;
Whitlock 1999) and is capable of the biotransformation of bio-
logically relevant endogenous and exogenous molecules (Shenoy
et al. 2010; Stejskalova and Pavek 2011; Tsuchiya et al. 2005),
we next evaluated a potential role for CYP1A1 in the TCDD-
activated pregnancy phenotype and placental adaptations. A
CYP1A1 null rat model was generated using CRISPR/Cas9 gene
editing (Figure S4A). CYP1A1 heterozygote × CYP1A1 hetero-
zygote breeding generated offspring with the expected Mendelian
pattern of inheritance (Figure S4B). Homozygous CYP1A1 null
rats did not possess detectable hepatic CYP1A1 protein (Figure
S4C,D) nor did they exhibit hepatic CYP1A1 enzymatic activity
(Figure S4E). We did not observe differences in fertility for
CYP1A1 null rats vs. WT rats (Figure S4F). We investigated the
effects of TCDD on pregnancy and placental adaptations. The
presence of CYP1A1 did not significantly affect pregnancy
responses or placental adaptations to the low dose of TCDD
(Figure S5A–E).

Maternal AHR Signaling and TCDD-Activated Pregnancy
Phenotypes
In the following experiments, we examined the importance of
maternal AHR signaling in pregnancy-associated responses to
TCDD. AHR null females were mated with WT males and com-
pared with WT male × WT female intercrosses. Again, we
tested the effects of low-dose TCDD (2 lg=kg BW) and high-
dose TCDD (20 lg=kg BW) on pregnancy and placental adapta-
tions. In contrast to the protective effects of the complete absence
of AHR (Figure 4A), the maternal-only AHR deficiency was not
protective for the high dose of TCDD (20 lg=kg BW), and,
instead, there was increased pregnancy failure (Figure 4E), simi-
lar to the response to TCDD in the WT × WT pregnancies
(Figure 4A). We also examined the role of maternal AHR signal-
ing in mediating placental adaptations to the lower dose of
TCDD (2 lg=kg BW). Interestingly, the absence of maternal
AHR eliminated the TCDD-mediated increased endovascular
trophoblast cell invasion (Figure 4F,G); however, a deficiency in
embryonic/extraembryonic AHR signaling generated by estab-
lishing pregnancies from heterozygous females and Ahr null
males did not compromise TCDD-induced intrauterine tropho-
blast cell invasion (Figure 4F,G).

RNA-Seq and Evaluation of the Uterine Mesometrial NK
Cell Phenotype following TCDD Exposure
We next sought to determine where within the mother TCDD
was acting to influence placental adaptations. We started our
search at the metrial gland, the ultimate site of intrauterine endo-
vascular trophoblast cell invasion. RNA-seq was performed on
GD13.5 metrial gland tissues isolated from oil- and TCDD-
treated females. Striking differences in the transcriptomic profiles
were noted. Transcripts with an adjusted p<0:05 were consid-
ered differentially regulated. We identified 312 up-regulated and

Figure 3. Generation of an AHR null rat model. (A) Schematic representa-
tion of the strategy for targeting Exon 2 of the Ahr gene. A red dashed line
depicts the 342-bp deleted region. (B) Mendelian ratios of AHR heterozy-
gous breeding and viability of AHR nulls. (C) Representative image of west-
ern blot analysis of AHR protein expression in WT and AHR null liver
tissues. GAPDH was used as an internal control. (D) Transcript analysis of
AHR target genes (Cyp1a1, Cyp1b1, and Ahrr) in WT and null (NULL) rat
liver following corn oil (OIL) or TCDD (25 lg=kg BW) treatment
(n=5=group): Cyp1a1, Cyp1b1, and Ahrr, p<0:0001. The delta-delta Ct
method was used for relative quantification of gene expression for each sam-
ple normalized to 18S RNA. (E) Number of ovulated oocytes recovered per
female after gonadotropin stimulation of 4- to 5-wk-old WT or AHR
null female rats (n=6=group). (F) Pregnancy success rates (sperm-positive
females that became pregnant) of WT (+/+) and AHR null (–/–) rats in vari-
ous breeding combinations (n=6=combination). (G) Average litter sizes
from pregnancies generated by WT (+/+) and AHR null (–/–) rats in various
breeding combinations (n=6=combination). Transcript expression level
is relative to oil-treated respective genotype. The level of significance was
determined using either the Wilcoxon rank sum test or a one-way ANOVA
followed by Tukey’s multiple comparison post hoc test where appropriate.
Asterisks denote a statistically significant difference from the corresponding
control. Bar graphs represent the mean±SEM. The mean and SEM values
for data presented in this figure are shown in Tables S11–S14. Note: AHR,
aryl hydrocarbon receptor; Ahrr, aryl-hydrocarbon receptor repressor;
ANOVA, analysis of variance; BW, body weight; Cyp1a1, cytochrome
P450, family 1, subfamily a, polypeptide 1; Cyp1b1, cytochrome P450, fam-
ily 1, subfamily b, polypeptide 1; F, female; GAPDH, glyceraldehyde 3-
phosphate dehydrogenase; Het, heterozygous; M, male; SEM, standard error
of the mean; TCCD, 2,3,7,8-tetrachlorodibenzo-p-dioxin; WT, wild type.
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581 down-regulated transcripts in oil vs. TCDD treatments
(Figure 5A,B, C) (Excel Table S1). Among the TCDD–up-regu-
lated transcripts, we observed classic AHR targets, such as
Cyp1a1, and transcripts indicative of invasive trophoblast cells,
such as Prl5a1 and Prl7b1 (Figure 5C). Conspicuous among the
TCDD down-regulated transcripts were transcripts characteristic
of NK cells (Figure 5C). The similarity of TCDD treatment
(Figure 4) and NK cell deficiency (as reported previously by
Chakraborty et al. 2011; Renaud et al. 2017) on intrauterine
endovascular trophoblast cell invasion and the TCDD-mediated
decrease in metrial gland NK cell-characteristic transcripts
prompted further examination of the effects of TCDD on NK
cells in the metrial gland. Distributions and numbers of NK cells
within GD13.5 metrial glands of oil- and TCDD-treated rats were
assessed by perforin immunohistochemistry and CD161-flow
cytometry. The distribution or number of NK cells within the
metrial gland of rats treated with TCDD did not significantly dif-
fer from those of rats treated with oil (Figure 5D,E). Some NK
cell-associated transcripts were higher (Klrd1, Ly49s3), some did
not differ in their expression (Ly49s5, Gzmm), whereas others
were lower (Klra5, Prf1, Gzmb) (Figure 5F). The differentially
regulated transcripts encode receptors mediating NK cell–target
cell interactions (Klrd1, Ly49s3, Klra5) and components of the
NK cell killing machinery (Prf1, Gzmb).

Measures of AHR Signaling at the Placentation Site of Rats
Treated with TCDD or Oil
TCDD is a known agonist of the AHR signaling pathway (Bock
2018; Murray et al. 2014; Wilson and Safe 1998). CYP1A1 is a
sensitive downstream target of TCDD activation of AHR signal-
ing (Mimura and Fujii-Kuriyama 2003; Nebert et al. 1993;
Whitlock 1999). Consequently, we examined CYP1A1 activation
in the placentation site of oil- and TCDD-treated pregnant rats.
CYP1A1 immunostaining revealed that AHR signaling was
prominently activated in the metrial gland and in the labyrinth
zone but not in the junctional zone of TCDD-treated pregnant
rats [Figure 2B (oil); Figure 6A]. Cyp1a1 transcript levels were
also dramatically higher in the metrial gland and labyrinth zone
of TCDD-treated pregnant rats (Figure 6B,C). Transcript levels
for two other AHR downstream targets, Cyp1b1 and Ahrr
(Thackaberry et al. 2005; Watson et al. 2014), were also higher
in the metrial gland and labyrinth zone (Figure 6B,C). CYP1A1
was not detectable in cytokeratin-positive trophoblast cells
(Figure 6A) but did colocalize with endothelial cell-specific anti-
gens recognized by antibodies to CD31 and RECA1 in the met-
rial gland and labyrinth zone (Figure 6D,E). We next examined
the actions of TCDD on rat TS cells and rat arterial endothelial
cells. Rat TS cells treated with TCDD did not differ significantly
in Cyp1a1 expression from control (Figure 6F); but rat arterial
endothelial cells expressed significantly more Cyp1a1 after
TCDD treatment compared with the control (Figure 6G).

Evaluation of Immune and Endothelial Cell Phenotypes at
the Uterine–Placental Interface in Rats Exposed to TCDD
The apparent phenotypic effects of TCDD on NK cells prompted
a deeper examination of the responses of cellular constituents
within the metrial gland (uterine–placental interface) from oil-
and TCDD-treated pregnant females. scRNA-seq analysis was
performed on GD13.5 metrial glands from oil- and TCDD-
treated pregnant females. A total of the 48,863 cells met quality
control standards (Figure 7A; Figure S6A–D) and resulted in the
identification of six clusters with distinct expression profiles
(Figure 7B–F; Figure S6E,F and Excel Table S2). Invasive troph-
oblast cells were not represented among the clusters owing to
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Figure 4. Evaluation of TCDD-activated placental adaptations resulting from
mating WT (WT), AHR heterozygous, and AHR null rats. (A) Effect of low and
high TCDD dose (2 lg=kg BW vs. 20 lg=kg weight) on WT and AHR null
(Null) fetal survival rate (n=6=group, *, p<0:0001). Fetal survival rate was cal-
culated on a per pregnancy basis as the number of live fetuses/total fetuses times
100. (B) Schematic of the rat placentation site. (C) Representative images from
placentation sites ofWT females (WT F)matedwithWTmales (WTM) or AHR
null females (Null F) mated with AHR null males (Null M). Pregnant females
treated with corn oil (OIL) or TCDD (2 lg=kg BW) at GD6.5 and euthanized on
GD13.5. (D) Prl7b1 transcript abundance in GD13.5 metrial gland tissues iso-
lated from WT F × WT M or Null F × Null M pregnancies treated with OIL
(n=5=group) or TCDD (n=6=group; WT F × WT M, *, p=0:0043). (E)
Survival rate of embryos generated by crossing Null F × WT M (n=6=group,
*, p<0:0001). (F) Representative images of placentation sites fromNull Fmated
toWTMorAhr heterozygous females (Het F)mated toNullM. Pregnant females
were treated with OIL or TCDD (2 lg=kg BW) at GD6.5 and euthanized on
GD13.5. Only placentation sites from null embryos (–/–) generated in the Het F
× NullM pregnancies are presented. (G) Prl7b1 transcript abundance in GD13.5
metrial gland tissues isolated from Null F × WT M or from null placenta/fetal
units (–/–) generated from Het F × Null M pregnancies treated with OIL
(n=5=group) or TCDD (n=6=group); Het F × NullM, *, p=0:0043. Null pla-
centa/fetal units from the Het F × Null Mmating were identified by genotyping
fetal tissues. In (C) and (F), placentation sites were interrogated by pan-cytokera-
tin (green) and CYP1A1 (red) immunofluorescence. Genotypes of maternal and
placental tissues are indicated: WT, +=+; Het, +=− ; Null, –/–. White arrows
show the depth of intrauterine endovascular trophoblast cell invasion. Scale bar:
500 lm. In (D) and (G), the delta-delta Ct method was used for relative quantifi-
cation of gene expression for each sample normalized to 18S RNA. Data pre-
sented in (A) and (E) were analyzed using a one-way ANOVA followed by
Tukey’s multiple comparison post hoc test, whereas data presented in (D) and
(G) were analyzed using the Wilcoxon rank sum test. Asterisks denote a statisti-
cally significant difference from the corresponding control. Bar graphs represent
the mean± SEM. The mean and SEM values for data presented in this figure are
shown in Tables S15–S18. Note: AHR, aryl hydrocarbon receptor; ANOVA,
analysis of variance; BW, body weight; cytokeratin, pan-cytokeratin; CYP1A1,
cytochrome P450, family 1, subfamily a, polypeptide 1; F, female; GAPDH,
glyceraldehyde 3-phosphate dehydrogenase; GD, gestation day; Het, heterozy-
gous;M,male; Prl7b1, prolactin family 7, subfamily b,member 1; SEM, standard
error of themean; TCCD, 2,3,7,8-tetrachlorodibenzo-p-dioxin;WT,wild type.
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their limited numbers. We observed similarities in transcript pro-
files for bulk RNA-seq (Figure 5) and scRNA-seq (Figure 7).

Metrial gland scRNA-seq confirmed that intrauterine NK
cells from TCDD-treated pregnant rats were distinct from intrau-
terine NK cells from oil-treated pregnant rats (Figure 7D). NK
cells were defined by the expression of Prf1, Nkg7, Xcl1, various
granzymes (Gzm), and killer cell lectin-like receptor (KLR)
genes. A total of 6,940 NK cells were analyzed. TCDD treatment
resulted in pronounced effects on transcripts characteristic of NK

cells, including seven members of the killer cell lectin-like recep-
tor family, as well as transcripts encoding other NK cell-specific
surface proteins, and granule associated proteins (Excel Table
S3). TCDD treatment also led to differential regulation of inter-
feron inducible transcripts, transcripts for components of NK cell
signaling pathways, and several transcripts for the class I histo-
compatibility complex (Excel Tables S3 and S4). NK cells did

Figure 6. Evaluation of measures of AHR pathway activation in placentation
sites of rats treated with oil or TCDD. (A) A representative image of pan-cy-
tokeratin (green) and CYP1A1 (red) immunostaining of a GD13.5 placenta-
tion site from a pregnant female rat treated with TCDD (2 lg=kg BW) at
GD6.5. Scale bar: 500 lm. Expression of Cyp1a1, Cyp1b1, and Ahrr in the
GD13.5 (B) metrial gland or (C) labyrinth zone tissues from pregnant rats
treated with corn oil (OIL) or TCDD (2 lg=kg BW) at GD6.5 (n=6=group).
Metrial gland: Cyp1a1, *, p=0:0079; Cyp1b1, *, p=0:0079; and Ahrr, *,
p=0:0079; labyrinth zone: Cyp1a1, *, p=0:0022 and Cyp1b1, *,
p=0:0022; Ahrr, p=0:0022. Asterisks denote a statistically significant dif-
ference from the corresponding control. Representative immunofluorescence
images for (D) CD31 and CYP1A1 colocalization and (E) RECA1 and
CYP1A1 colocalization in GD13.5 metrial gland and labyrinth zone tissues
from pregnant rats treated with corn oil (OIL) or TCDD (2 lg=kg BW) at
GD6.5. Scale bar: 50 lm. Cyp1a1 expression in (F) rat trophoblast stem
cells and (G) rat arterial endothelial cells following vehicle or TCDD treat-
ment for 24 h (n=6). Cyp1a1 transcript levels were measured by RT-qPCR
(*, p<0:0001). Transcript expression level is relative to control. Data were
analyzed using the Wilcoxon rank sum test (B and C) and an ANOVA fol-
lowed by Tukey’s multiple comparison post hoc test (F and G). Bar graphs
represent the mean±SEM. The mean and SEM values for data presented in
this figure are shown in Tables S21–S24. Note: Ahrr, aryl-hydrocarbon re-
ceptor repressor; ANOVA, analysis of variance; BW, body weight; CD31,
cluster of differentiation 31; Cyp1a1, cytochrome P450, family 1, subfamily
a, polypeptide 1; Cyp1b1, cytochrome P450, family 1, subfamily b, polypep-
tide 1; GD, gestation day; JZ, junctional zone; LZ, labyrinth zone; MG, met-
rial gland; RECA1, Rat Endothelial Cell Antigen-1; RT-qPCR, real-time
quantitative polymerase chain reaction; SEM, standard error of the mean;
TCCD, 2,3,7,8-tetrachlorodibenzo-p-dioxin.

Figure 5. Effects of TCDD on metrial gland (uterine–placental interface)
transcript profiles. Transcript profiles were determined by RNA-sequenc-
ing (RNA-seq) of metrial gland tissue obtained from pregnant rats treated
with corn oil (OIL) or TCDD (2 lg=kg BW) at GD6.5 and harvested at
GD13.5. The results are presented in a table (A) significantly upregulated
and down-regulated transcripts in response to TCDD (p<0:05 and
log2-fold change either direction >1:5). (B) Gene ontology analysis of top
dysregulated genes. (C) A heatmap showing select differentially expressed
genes in replicates of OIL- and TCDD-treated rats. (D) Distribution of NK
cells within GD13.5 metrial glands of OIL- or TCDD-treated rats assessed
by perforin immunohistochemistry (n=3=group). Scale bar: 500 lm. (E)
NK cell numbers measured by CD161-flow cytometry (n=3=group). (F)
Validation of RNA-seq results by RT-qPCR (n=5=group). The level of
significance was determined using the Wilcoxon rank sum test (Klrd1, *,
p=0:0079; Ly49s3c; Klra5, *, p=0:0159; Prf1, *, p = 0.0079; Gzmb, *,
p=0:0079). Transcript expression level is relative to control. The delta-
delta Ct method was used for relative quantification of gene expression for
each sample normalized to 18S RNA. Asterisks denote a statistically sig-
nificant difference from the corresponding controls. Bar graphs represent
the mean±SEM. The mean and SEM values for data presented in this fig-
ure are shown in Tables S19 and S20. Note: BW, body weight; cytokera-
tin, pan-cytokeratin; down, down-regulation; GD, gestation day; Gzmb,
granzyme B; Klra5, killer cell lectin-like receptor, subfamily a, member 5;
Klrd1, killer cell lectin-like receptor subfamily D, member 1; Ly49s3c,
Ly-49 stimulatory receptor 3; NK, natural killer; Prf1, perforin 1; RT-
qPCR, real-time quantitative polymerase chain reaction; SEM, standard
error of the mean; TCCD, 2,3,7,8-tetrachlorodibenzo-p-dioxin; up, up-
regulation.
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not exhibit detectable Ahr transcripts and TCDD did not activate
known AHR target genes (e.g., Cyp1a1) (Figure 7G).

Macrophages were also affected by TCDD exposure.
Macrophages were defined by the expression of Cd74, Csf1r,
C1qa, Lyz2, and Fcer1g. TCDD-mediated differential macro-
phage transcript expression was observed for several members of
the class I histocompatibility complex, cell adhesion molecules
and extracellular matrix components, chemokines, and immune
effector molecules (Figure 7E and Excel Tables S5 and S6).
Macrophages exhibited minimal expression of Ahr, and TCDD
treatment resulted in a modest activation of Ahrr, a known AHR
target gene (Figure 7G).

Endothelial cells emerged as the primary target of TCDD
action, consistent with the identification of CYP1A1 activation in

endothelial cells of metrial glands from TCDD-treated pregnant
females (Figure 6D,E). Endothelial cells were defined by the
expression of Plvap, Tie2, Cav1, Cavin2, Il33 and Adgrl4. Three
classic AHR targets (Cyp1a1, Cyp1b1, Nqo1) were prominently
activated in metrial gland endothelial cells following TCDD ex-
posure (Figure 7F). This coincides with endothelial cells being
the primary site of Ahr expression within the metrial gland
(Figure 7G). TCDD affected endothelial cell expression of tran-
scripts encoding proteins associated with extracellular matrix,
cell–cell adhesion and cell migration, endothelial cell signaling,
leukocyte development and trafficking, hemostasis, members of
the class I histocompatibility complex, and interferon responsive-
ness (Excel Tables S7 and S8). We also identified transcripts
establishing potential ligand–receptor signaling modules between
endothelial cells and NK cells and between endothelial cells and
macrophages (Excel Table S9).

Finally, we used scRNA-seq of PBMCs to determine whether
TCDD treatment affected immune cells that enter the metrial gland.
TCDD exposure (2 lg=kg BW) onGD6.5 did not have a detectable
influence on the transcriptomes of circulating T cells, monocytes, B
cells, or NK cells harvested on GD13.5 (Figure S7; Excel Tables
S10–S14). These findings are consistent with our observations that
TCDD-dependent phenotypes of immune cells within the metrial
gland are secondary to TCDDactions on endothelial cells.

Discussion
Within our environment we are exposed to a diverse array of
compounds affecting reproduction, including the biology of preg-
nancy (Crain et al. 2008; Fowler et al. 2012; Gingrich et al. 2020;
Rattan et al. 2017). Among these environmental stressors are
chemicals that impact physiological processes through activation
of AHR, a ligand-driven transcriptional regulator (Beischlag et al.
2008; Gore et al. 2015; Schmidt and Bradfield 1996; Wilson and
Safe 1998). In the present study, we examined the effects of an
environmental pollutant, TCDD, representing a prototypical
AHR ligand (Denison and Nagy 2003), on pregnancy and placen-
tation in the rat. The actions of TCDD were dose dependent.
High TCDD doses interfered with pregnancy, whereas low doses,
capable of inducing both maternal and fetal AHR signaling, eli-
cited placentation site-specific adaptations. Maternal, placental,
and fetal responses to TCDD were contingent upon a functional
AHR signaling system but not CYP1A1. Furthermore, TCDD-
driven placental adaptations were dependent upon maternal AHR
signaling. Within the uterine–placental interface, TCDD directly
targeted uterine endothelial cells and indirectly modulated intrau-
terine immune cell and invasive trophoblast cell dynamics.

Mouse and rat Ahr mutant models exhibit phenotypic similar-
ities and possibly some differences. Inactivation of AHR in both
the mouse and rat interferes with responses to xenobiotic chal-
lenges (Fernandez-Salguero et al. 1995; Harrill et al. 2013, 2016;
Mimura et al. 1997; Phadnis-Moghe et al. 2016; Schmidt et al.
1996). The mouse and rat may differ regarding the physiological
consequences of disruption of their respective Ahr locus. Mouse
vs. rat differences have been noted for the involvement of AHR
in liver and kidney physiology/pathophysiology (Harrill et al.
2013). However, caution is required when evaluating the biology
of global Ahr mutant mouse models. Developmental and repro-
ductive phenotypes associated with the Ahr null mouse are not
consistent among the reported models. Two Ahr null mouse
models exhibited growth delays and reproductive anomalies
(Fernandez-Salguero et al. 1995; Karman 2011; Schmidt et al.
1996), whereas a third Ahr null mouse model showed fertility
similar to WT mice (Mimura et al. 1997). Ahr null rats resembled
the latter mouse model, and were indistinguishable from WT rats
in their breeding and in an assortment of parameters of

Figure 7.Mapping cell dynamics within the metrial gland (uterine–placental
interface) of pregnancies exposed to oil or TCDD using scRNA-seq. Metrial
glands were harvested on GD13.5 from pregnant rats treated with corn oil
(OIL) or TCDD (2 lg=kg BW) at GD6.5 and analyzed by scRNA-seq. (A)
A flow diagram illustrating the study design and analysis strategy. (B)
Expression of canonical markers identifying cell clusters. (C) Number of dif-
ferentially expressed genes (DEGs) following TCDD treatment in various
cell clusters. Volcano plots showing DEGs between OIL and TCDD samples
in (D) natural killer (NK) cells, (E), macrophages (Mϕ), and (F) endothelial
cells (EC). Red dots represent up-regulated genes, whereas blue dots repre-
sent down-regulated genes. (G) Expression of Ahr, Cyp1a1, and Cyp1b1 in
stromal (ST) cells, NK cells, mesenchymal (MES) cells, Mϕ, EC, and
smooth muscle cells (SMC). Data were analyzed by a two-sided Wilcoxon-
rank-sum test, FDR<0:05, logFC>0:15. Additional lists of relevant differ-
entially regulated transcripts and pathway analysis are provided in Excel
Tables S2–S8. Note: Ahr, aryl hydrocarbon receptor; BW, body weight;
Cyp1a1, cytochrome P450, family 1, subfamily a, polypeptide 1; Cyp1b1,
cytochrome P450, family 1, subfamily b, polypeptide 1; down, down-regula-
tion; FDR, false discovery rate; GD, gestation day; logFC, log fold change;
scRNA-seq, single cell RNA sequencing; TCCD, 2,3,7,8-tetrachlorodibenzo-
p-dioxin; up, up-regulation.
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reproductive performance. Potential origins of phenotypic hetero-
geneity among Ahr mutant mouse models have been discussed
(Hernández-Ochoa et al. 2009; Lahvis and Bradfield 1998). Our
findings in the Ahr null rat highlight the need for caution in inter-
preting developmental and reproductive phenotypes previously
ascribed to Ahr null mouse models.

The trophoblast cell is the parenchymal cell of the placenta
(Georgiades et al. 2002; Knöfler et al. 2019; Maltepe and Fisher
2015; Soares et al. 2018). We observed activation of intrauterine
trophoblast cell invasion following exposure to TCDD. Based on
our results, rat trophoblast cells were not a direct target of TCDD
action. Rat trophoblast cells developing within the placenta or in
cell culture did not activate CYP1A1 expression when exposed to
TCDD or other AHR activators. There are cells within the rodent
placentation site that respond to TCDD but not trophoblast cells.
This is in stark contrast to human trophoblast cells, which exhibit a
striking response to TCDD and other AHR activators (Stejskalova
and Pavek 2011; Stejskalova et al. 2011). AHR expression is read-
ily detected in the human placenta within trophoblast and some
non-trophoblast cell types (Jiang et al. 2010; Stejskalova et al.
2011), whereas efforts to localize AHR expression in the rodent
placenta are subject to debate. AHR expression is low in the rat pla-
centa relative to other tissues (Carver et al. 1994). Within the rat
placenta, AHR appears to be more abundant in the labyrinth zone
than the junctional zone (Ishimura et al. 2002). Evidence of syncy-
tiotrophoblast and non-trophoblast cell AHR expression has been
reported (Detmar et al. 2008; Kitajima et al. 2004; Stejskalova et al.
2011). Species differences in trophoblast cell AHR signaling are an
important consideration in using rodents for modeling environ-
mental exposures on human placental health. Molecular mecha-
nisms that underlie differences in rodent vs. human trophoblast cell
responsiveness to TCDD are unknown as is the evolutionary sig-
nificance of such species-specific cellular responses.

Pregnancy-dependent biological responses were influenced by
TCDD dosage. High doses of TCDD resulted in pregnancy failure.
These adverseTCDDactionsmay be a direct consequence of disrup-
tions in maternal to fetal nutrient delivery. AHR activation has been
shown to disrupt vascularization of the labyrinth zone of the rat pla-
centa (Ishimura et al. 2006, 2009;Wu et al. 2014), which is themain
conduit for maternal–fetal nutrient transfer (Burton and Fowden
2012; Knipp et al. 1999). Exposure to low-dose TCDD yielded a
pregnancy-specific adaptive response characterized by activation of
intrauterine endovascular trophoblast cell invasion. The response is
notable in that the lining of uterine spiral arterioles changes from en-
dothelial cells to trophoblast cells, along with putative differences in
the properties of cells lining the vessels, including permeability,
coagulation, injury repair, immune and inflammatory cell regula-
tion, intra-arterial cell–cell regulation, and/or responses to physio-
logical and pathological perturbations. Enhanced trophoblast-
guided uterine spiral artery remodeling supports nutrient delivery
for fetal growth (Kaufmann et al. 2003; Pollheimer et al. 2018).
Activation of endovascular trophoblast cell invasion is also observed
with two other in vivo manipulations: a) hypoxia and b) NK cell
depletion. Hypoxia (Rosario et al. 2008), NK cell depletion
(Chakraborty et al. 2011; Renaud et al. 2017), and, based on ourfind-
ings, TCDD exposure each resulted in an activation of intrauterine
endovascular trophoblast cell invasion. How these triggers operate
to increase trophoblast cell invasion is not known. Current evidence
indicates that hypoxia triggers trophoblast progenitor cell differen-
tiation to the invasive trophoblast cell lineage (Chakraborty et al.
2011, 2016; Chang et al. 2018; Soares et al. 2017; Wakeland et al.
2017), whereas the absence of NK cells impairs uterine spiral artery
remodeling, which decreases oxygen tension at the uterine interface
leading to trophoblast invasion (Chakraborty et al. 2011) . The
involvement of hypoxia and/or NK cells in TCDD activation of

endovascular trophoblast cell invasion is unknown. It is an interest-
ing coincidence that the biologically active state of both hypoxia-
inducible factor andAHR requires physical interactions withARNT
(McIntosh et al. 2010).

Based on the results of our study, we conclude that the actions
of TCDD on placental adaptations required a functional AHR
signaling pathway in the mother but not in the placenta or fetus.
TCDD failed to elicit an adaptive response in pregnant AHR null
rats mated to WT males. In order to begin to understand how
TCDD was acting, we focused our attention at the uterine–pla-
cental interface, a structure also referred to as the metrial gland
(Selye and McKeown 1934). This uterine compartment is imme-
diately adjacent to the developing placenta, the site of vasculature
supplying the placenta and a unique leukocytic cell composition,
and the ultimate destination of invasive trophoblast cells (Soares
et al. 2012). The distribution of NK cells and invasive trophoblast
cells exhibit a reciprocal relationship. NK cells are abundant at
the uterine interface as the placenta is being established and then
vacate the region as trophoblast cells invade the uterine paren-
chyma (Ain et al. 2003). The transcriptomes of both immune and
nonimmune cells within the uterine–placental interface were
affected by TCDD. However, immunohistochemical and scRNA-
seq analyses for CYP1A1 and AHR expression demonstrated that
endothelial cells were the predominant direct cellular site of
TCDD action at the uterine–placental interface. Endothelial cells
have been previously shown to be responsive to AHR activation
(Dauchy et al. 2009; Stegeman et al. 1995). Thus, TCDD effects
on other cellular constituents at the uterine–placental interface
were indirect. The scRNA-seq analysis supports endothelial cells
serving as a TCDD/AHR-regulated gatekeeper controlling
immune cell entry into the uterus (Reglero-Real et al. 2016;
Wettschureck et al. 2019) through the production of cytokines/
chemokines regulating intrauterine immune cell phenotypes (Al-
Soudi et al. 2017; Pober and Sessa 2007; Sturtzel 2017) or, alter-
natively, by facilitating trophoblast cell–endothelial cell interac-
tions prerequisite for endovascular invasive trophoblast cell
migration and uterine spiral artery remodeling (Harris et al. 2009;
Sato 2020). Thus, endothelial cells emerge as a key mediator of a
pathophysiologic response to an environmental exposure.

Comparison of rat and human TCDD exposures during preg-
nancy may not be optimal and our experiments investigating the
effects of TCDD on rat placentation may be of limited value for
predicting human risk assessments (Emond et al. 2004, 2016;
Hurst et al. 1998, 2000). However, our findings demonstrate the
potential for TCDD, and possibly other AHR ligands, to act as a
modulator(s) of placental development. Furthermore, they high-
light the need to consider a role for AHR signaling and the
impact of environmental exposures on cellular dynamics at the
human uterine–placental interface.
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